Abstract

Monitoring data were used to assess causes behind a recent shift from a clear-water to a turbid-water state in Lake Major, a 10 ha shallow lake in Hungary. In 1999–2000, fish manipulation was conducted in this hypertrophic lake. Reduced fish stock resulted in clearing water and the development of a dense (>80% coverage) submerged vegetation in 2005. During the recent abrupt shift, which occurred in 2007, submerged vegetation subsequently declined after a two-year period of clear water and abundant vegetation. An intense decay of macrophytes within the lake produced a rapid transition between the clear- and turbid-water states. During the clear-water state in 2005–2006, the most important variables predominantly correlating with macrophyte cover were Secchi transparency, temperature and TN, while TN, temperature, Secchi depth and chlorophyll-a were the most significant variables during the turbid-water state in 2007. Nitrogen may play a significant role in the cover of submerged macrophytes when TP is moderate. We argue that several factors in concert are necessary to initiate a shift. Water temperature likely has contributed to triggering shift through inter-year-dependent changes in cover of macrophytes, with fish recruitment having key roles in the dynamics of shallow lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call