Abstract

Neural oscillations on the human auditory cortex measured with the magnetoencephalography were band-pass filtered between 3 and 16 Hz and then divided into instantaneous phases and amplitudes by the Hilbert transformation. Spontaneously, the amplitudes fluctuated, i.e. waxed and waned; The phases rotated at around 6 Hz most of the time, but abruptly accelerated or decelerated when the amplitudes waned close to zero. After auditory stimuli, the amplitudes and the phases were coupled in the same way as spontaneously. Amounts and directions of the accelerations or decelerations were thereby specific so that the phases subsequently took mostly the same value, i.e. were locked, at around the time of N100 peaks in the auditory evoked responses. In short, the auditory evoked responses emerged from spontaneous oscillations by abrupt phase changes coupled with waning in amplitudes and phase-locking thereafter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.