Abstract

THE warming at the end of the last glaciation was characterized by a series of abrupt returns to glacial climate, the best-known of which is the Younger Dryas event1. Despite much study of the causes of this event and the mechanisms by which it ended, many questions remain unresolved1. Oxygen isotope data from Greenland ice cores2–4 suggest that the Younger Dryas ended abruptly, over a period of about 50 years; dust concentrations2,4 in these cores show an even more rapid transition (≲20 years). This extremely short timescale places severe constraints on the mechanisms underlying the transition. But dust concentrations can reflect subtle changes in atmospheric circulation, which need not be associated with a large change in climate. Here we present results from a new Greenland ice core (GISP2) showing that snow accumulation doubled rapidly from the Younger Dryas event to the subsequent Preboreal interval, possibly in one to three years. We also find that the accumulation-rate change from the Oldest Dryas to the Bo11ing/Allerod warm period was large and abrupt. The extreme rapidity of these changes in a variable that directly represents regional climate implies that the events at the end of the last glaciation may have been responses to some kind of threshold or trigger in the North Atlantic climate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.