Abstract

Two high-sediment-accumulation-rate Icelandic lakes, the glacial lake Hvítárvatn and the non-glacial lake Haukadalsvatn, contain numerous tephra layers of known age, which together with high-resolution paleomagnetic secular variations allow synchronization with a well-dated marine core from the shelf north of Iceland. A composite standardized climate record from the two lakes provides a single time series that efficiently integrates multi-proxy data that reflect the evolution of summer temperatures through the Holocene. The first-order trends in biogenic silica (BSi), δ13C, and C:N rise relatively abruptly following deglaciation, reaching maximum values shortly after 8 ka following a complex minimum between 8.7 and 8.0 ka. The Holocene Thermal Maximum (HTM) in the lakes is marked by all proxies, with a sharp transition out of the 8 ka cold event into peak summer warmth by 7.9 ka, and continuing warm with some fluctuations until 5.5 ka. Decreasing summer insolation after the HTM is reflected by incremental cooling, initially ∼5.5 ka, with subsequent cold perturbations recorded by all proxies 4.3 to 4.0 ka and 3.1 to 2.8 ka. The strongest disturbance occurred after 2 ka with initial summer cooling occurring between 1.4 and 1.0 ka, followed by a more severe drop in summer temperatures after 0.7 ka culminating between 0.5 and 0.2 ka. Following each late Holocene cold departure, BSi re-equilibrated at a lower value independent of the sediment accumulation rate. Some of the abrupt shifts may be related to Icelandic volcanism influencing catchment stability, but the lack of a full recovery to pre-existing values after the perturbation suggests increased periglacial activity, decreased vegetation cover, and glacier growth in the highlands of Iceland. The similarity in timing, direction and magnitude of our multi-proxy records from glacial and non-glacial lakes, and from the adjacent marine shelf, suggests that our composite record reflects large-scale shifts in ocean/atmosphere circulation throughout the northern North Atlantic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call