Abstract
We report a magnetotransport study of spin relaxation in 1.4–21.2 nm epitaxial SrIrO3 thin films coherently strained on SrTiO3 substrates. Fully charge compensated semimetallic transport has been observed in SrIrO3 films thicker than 1.6 nm, where the charge mobility at 10 K increases from 45 cm2/V s to 150 cm2/V s with decreasing film thickness. In the two-dimensional regime, the charge dephasing and spin–orbit scattering lengths extracted from the weak localization/anti-localization effects show power-law dependence on temperature, pointing to the important role of electron–electron interaction. The spin–orbit scattering time τso exhibits an Elliott–Yafet mechanism dominated quasi-linear dependence on the momentum relaxation time τp. Ultrathin films approaching the critical thickness of metal–insulator transition show an abrupt enhancement in τso, with the corresponding τso/τp about 7.6 times of the value for thicker films. A likely origin for such unusual enhancement is the onset of strong electron correlation, which leads to charge gap formation and suppresses spin scattering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.