Abstract
Increased de novo fatty acid (FA) synthesis is one hallmark of tumor cells, including prostate cancer. We present here our most recent results showing that lipid composition in human prostate cancer is characterized by an increased ratio of monounsaturated FA to saturated FA, compared with normal prostate, and evidence the overexpression of the lipogenic enzyme stearoyl-CoA desaturase 1 (SCD1) in human prostate cancer. As a new therapeutic strategy, we show that pharmacologic inhibition of SCD1 activity impairs lipid synthesis and results in decreased proliferation of both androgen-sensitive and androgen-resistant prostate cancer cells, abrogates the growth of prostate tumor xenografts in nude mice, and confers therapeutic benefit on animal survival. We show that these changes in lipid synthesis are translated into the inhibition of the AKT pathway and that the decrease in concentration of phosphatidylinositol-3,4,5-trisphosphate might at least partially mediate this effect. Inhibition of SCD1 also promotes the activation of AMP-activated kinase and glycogen synthase kinase 3alpha/beta, the latter on being consistent with a decrease in beta-catenin activity and mRNA levels of various beta-catenin growth-promoting transcriptional targets. Furthermore, we show that SCD1 activity is required for cell transformation by Ras oncogene. Together, our data support for the first time the concept of targeting the lipogenic enzyme SCD1 as a new promising therapeutic approach to block oncogenesis and prostate cancer progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.