Abstract

Research into the single grain cutting mechanism is important for understanding complex grinding mechanisms. Based on the characteristics of ultrasonic vibration, the motion equation of the grain is established, and the generated trajectory is theoretically analyzed. By adopting the method of combining high-speed grinding technology with ultrasonic vibration, abrasive wear forms of single cubic boron nitride (CBN) grains under common and ultrasonic conditions are studied. Further studies are conducted on the influence of the grain itself and the main grinding parameters on abrasive wear. Research shows that the main forms of abrasive wear during ultrasonic-assisted grinding are shearing wear and removing wear. However, common grinding leads to micro-crushing wear and a small amount of abrasion wear; the different forms of wear correspond to different grinding force signals. The greater the initial grain protrusion height, the greater is the abrasion of the protrusion; for the same grain protrusion height, the abrasive wear due to ultrasonic-assisted grinding is larger than that due to common grinding. As the grinding depth increases, the abrasive wear of both processing modes increases; however, in the case of ultrasonic machining, the abrasive wear increases slowly and is larger than that under common grinding. This study provides a certain decision basis for real-time monitoring of the ultrasonic-assisted high-speed grinding process. Additionally, it provides guidance and reference for the manufacture and selection of the grinding wheel and for the selection of reasonable processing parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.