Abstract

In present work, abrasive waterjet machining has been used to machine adhesively bonded titanium-carbon fiber-reinforced plastics-titanium hybrid laminate with varying traverse speed, jet pressure, and stand-off distance. The effect of varying abrasive waterjet machining parameters on cut quality has been quantified by material removal rate, metal composite interface damage factor, taper ratio ( T r), and surface roughness (Ra). Response surface methodology along with central composite design has been used to analyze the influence of process parameters on output responses. Additionally, analysis of variance was performed to identify the significant parameters on the output responses. For better abrasive waterjet cut quality, the optimal values of process parameters obtained were 200 MPa jet pressure, 237.693 mm/min traverse speed, and 1 mm stand-off distance. The corresponding material removal rate, metal composite interface damage factor, taper ratio, and surface roughness are 5.388 mm3/s, 1.41, 1.16, and 3.827 µm, respectively. Furthermore, validation tests have been performed with obtained optimal parameters that deliver satisfactory outcomes with an error of 5.35%, 3.07%, 2.29%, and 0.39% for material removal rate, metal composite interface damage factor, taper ratio, and surface roughness, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call