Abstract
Abrasive water jet machining (AWJM) is a widely accepted sustainable machining method used to machine difficult-to-cut materials in view of both environmental and economic benefits. This chapter discusses the machining performance of sustainable/green machining method on AISI 304 grade steel material. Five process parameters, namely abrasive grain size (A), abrasive flow rate (B), nozzle speed (C), working pressure (D), and standoff distance (E), are used to know the green machining attributes like MRR, process time, surface roughness, and process energy. Experimentation is done using Taguchi (L27) orthogonal array to study the influence of each process parameters on the green machining parameters. Additionally, regression analysis and ANOVA are done to show the statistical significance of the green machining process. At last, the DEAR method is used for the optimization of green machining attributes of AWJM process. The results show that AWJM process is an adequate process for machining of metallic materials and produces high-quality parts with excellent productivity and less environmental pollution. The overall optimal setting obtained is A (60 mesh, level 1), B (1.5 mm, level 1), C (150 MPa, level 1), D (225 mm/min, level 3), and E (5 g/s, level 2). The corresponding green attributes obtained are SR as 1.84 μm, MRR as 468 mm3/min, PT as 0.128 s, and PE as 769 W. Finally, confirmatory results for MRR, SR, PT, PE are found closer to the experimental results and well within the considerable ranges and satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.