Abstract

The past decades have witnessed a huge interest in uncovering the neural bases of intelligence (e.g., Stelmack, & Houlihan, 1995; Stelmack, Knott, & Beauchamp, 2003). This study investigated the influence of transcranial alternating current stimulation (tACS) on fluid intelligence performance and corresponding brain activation. Previous findings showed that left parietal theta tACS leads to a transient increase in fluid reasoning performance. In an attempt to extend and replicate these findings, we combined theta tACS with fMRI. In a double-blind sham-controlled experiment, N = 20 participants worked on two intelligence tasks (matrices and paper folding) after theta tACS was applied to the left parietal cortex. Stimulation-induced brain activation changes were recorded during task processing using fMRI. Results showed that theta tACS significantly increased fluid intelligence performance when working on difficult items in the matrices test; no effect was observed for the visuo-spatial paper folding test. Whole-brain analyses showed that left parietal brain stimulation was accompanied by lower activation in task-irrelevant brain areas. Complemental ROI analyses revealed a tendency towards lower activation in the left inferior parietal cortex. These findings corroborate the functional role of left parietal theta activity in fluid reasoning and are in line with the neural efficiency hypothesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.