Abstract
Abrasive machining has been used for inner surface processing of various hollow components. In this study, we applied an in-air fluid jet as a precision machining method for the inner surface of an axisymmetric x-ray mirror whose inner diameter was less than 10mm. We employed an abrasive with a polyurethane@silica core-shell structure, which has a low density of about 1.2 g/cm3 and a relatively large particle size of about 15 µm. By using this abrasive, a practical removal rate and a smooth machined surface were simultaneously obtained. We performed figure corrections for an axisymmetric mirror and improved the circumferential figure accuracy to a sub-10nm root mean square level. To evaluate the machining performance in the longitudinal direction of the ellipsoidal surface, we also performed periodic figure fabrication on the inner surface of a 114 mm-long nickel ellipsoidal mirror. X-ray ptychography, an optical phase retrieval method, was also employed as a three-dimensional figure measurement technique of the mirror. The wavefield of the x-ray beam focused by the processed ellipsoidal mirror was observed with the ptychographic system at SPring-8, a synchrotron radiation facility. The retrieval calculations for the wavefront error confirmed that a sinusoidal waveform with a period of 12mm was fabricated on the mirror surface. These experimental results suggest that a nanoscale figure fabrication cycle for the inner surface consisting of jet machining and wavefront measurement has been successfully constructed. We expect this technique to be utilized in the fabrication of error-free optical mirrors and various parts having hollow shapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.