Abstract

Published solubility data for 4,5-dihydroxyanthraquinone-2-carboxylic acid dissolved in several organic solvents of varying polarity and hydrogen-bonding character are used to calculate the Abraham model solute descriptors. Calculated descriptor values suggest that 4,5-dihydroxyanthraquinone-2-carboxylic acid engages in intramolecular hydrogen formation between the two phenolic hydrogens and the proton acceptor sites (the lone electron pairs) on the neighboring quinone oxygen atom. Our study further shows that existing group contribution and machine learning methods provide rather poor estimates of the experimental-based solute descriptors of 4,5-dihydroxyanthraquinone-2-carboxylic acid, in part because the estimation methods to not account for the likely intramolecular hydrogen-bonds. The predictive aspect of the Abraham model is illustrated by predicting the solubility of 4,5-dihydroxyanthraquinone-2-carboxylic acid in 28 additional organic mono-solvents for which experimental data does not exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call