Abstract

Infinite dilution activity coefficients (γ∞) were measured at 298K for 13 different aliphatic hydrocarbons (alkanes, cycloalkanes, alkenes), 12 different aromatic compounds (benzene, alkylbenzenes, halobenzenes, naphthalene), and 2-chloro-2-methylpropane dissolved in 2-ethoxyethanol, along with solubilities for 11 crystalline organic compounds (xanthene, phenothiazine, acenaphthene, diphenyl sulfone, 3,5-dinitro-2-methylbenzoic acid, 3-chlorobenzoic acid, 2-methylbenzoic acid, 4-chloro-3-nitrobenzoic acid, 3,5-dinitrobenzoic acid, benzil, and thioxanthen-9-one) dissolved in 2-ethoxyethanol at 298K. The experimental values were converted to gas-to-2-ethoxyethanol partition coefficients, water-to-2-ethoxyethanol partition coefficients, and molar solubility ratios using standard thermodynamic relationships. The calculated partition coefficient data and molar solubility ratios, combined with published literature values, were used to derive Abraham model correlations for solute transfer into 2-ethoxyethanol from both water and the gas phase. The derived Abraham model correlations predicted the observed values to within 0.15 log units (or less).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.