Abstract

Unicellular saprobic fungi (yeasts) inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related) yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

Highlights

  • Fungi are heterotrophic organisms supporting key processes in terrestrial ecosystems

  • Statistical analysis suggested that total yeast counts obtained from 1:10 and 1:20 soil-to-water suspensions were not significantly different (ANOVA: F = 2.37; p = 0.13), whereas the total quantity observed with 1:5 dilution was significantly lower (ANOVA: F = 6.92; p = 0.002)

  • This is the first study, which tested the hypothesis that soil yeasts rely on forest properties such as substrate availability in a way similar to bryophytes of fungi [19]

Read more

Summary

Introduction

Fungi are heterotrophic organisms supporting key processes in terrestrial ecosystems. Due to their wide range of enzymatic capabilities, they are involved in many element cycles, providing important ecosystem services, such as nutrient mobilization and turnover, and the breakdown of persistent organic compounds, including toxic molecules [1]. Fungi are essential for forest ecosystems as they are the only organisms capable of substantial lignin decay (see, for example [2]). Thereby, fungi provide nutrition to a large variety of above- and belowground heterotrophic organisms. Complex habitats ,such as soil, may harbor large numbers of undescribed fungi, estimated to outnumber plants by at least 6:1 [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call