Abstract

Forests play a crucial part in regulating global climate change since their aboveground biomass (AGB) relates to the carbon cycle, and its changes affect the main carbon pools. At present, the most suitable available SAR data for wall-to-wall forest AGB estimation are exploiting an L-band polarimetric SAR. However, the saturation issues were reported for AGB estimation using L-band backscatter coefficients. Saturation varies depending on forest structure. Polarimetric information has the capability to identify different aspects of forest structure and therefore shows great potential for reducing saturation issues and improving estimation accuracy. In this study, 121 polarimetric decomposition observations, 10 polarimetric backscatter coefficients and their derived observations, and six texture features were extracted and applied for forest AGB estimation in a tropical forest and a boreal forest. A parametric feature optimization inversion model (Multiple linear stepwise regression, MSLR) and a nonparametric feature optimization inversion model (fast iterative procedure integrated into a K-nearest neighbor nonparameter algorithm, KNNFIFS) were used for polarimetric features optimization and forest AGB inversion. The results demonstrated the great potential of L-band polarimetric features for forest AGB estimation. KNNFIFS performed better both in tropical (R2 = 0.80, RMSE = 22.55 Mg/ha, rRMSE = 14.59%, MA%E = 12.21%) and boreal (R2 = 0.74, RMSE = 19.82 Mg/ha, rRMSE = 20.86%, MA%E = 20.19%) forests. Non-model-based polarimetric features performed better compared to features extracted by backscatter coefficients, model-based decompositions, and texture. Polarimetric observations also revealed site-dependent performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.