Abstract

We theoretically investigate above-threshold ionization of Mg by linearly and circularly polarized fs laser pulses. We find that the above-threshold ionization peaks are accompanied by small subpeaks for both linearly and circularly polarized pulses. We interpret the physical origin of the subpeaks as above-threshold ionization from the low-lying bound states which are far off-resonantly excited by the spectral wing of the pulse. This interpretation is confirmed by our comparative numerical studies. Furthermore, we provide a clear explanation of why this kind of subpeak in the photoelectron energy spectra has not been reported for smaller photon energies with Mg and other commonly used atoms such as H and rare gas atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.