Abstract

We present theoretical studies of above threshold ionization (ATI) produced by spatially inhomogeneous fields. This kind of field appears as a result of the illumination of plasmonic nanostructures and metal nanoparticles with a short laser pulse. We use the time-dependent Schr\"odinger equation (TDSE) in reduced dimensions to understand and characterize the ATI features in these fields. It is demonstrated that the inhomogeneity of the laser electric field plays an important role in the ATI process and it produces appreciable modifications to the energy-resolved photoelectron spectra. In fact, our numerical simulations reveal that high energy electrons can be generated. Specifically, using a linear approximation for the spatial dependence of the enhanced plasmonic field and with a near infrared laser with intensities in the mid- 10^{14} W/cm^{2} range, we show it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study how the carrier envelope phase influences the emission of ATI photoelectrons for few-cycle pulses. Our quantum mechanical calculations are supported by their classical counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.