Abstract
A simple analytical expression for the above threshold voltage drain current is derived in nanocrystalline silicon thin-film transistors (TFTs), based on an exponential energy distribution of band tail states. When the characteristic temperature distribution of the band tails is equal to 1.5 times the lattice temperature, the derived expression leads to the basic “quadratic” metal-oxide-semiconductor current expression. By including the impact ionization effect and using the same trap distribution parameters, the model describes adequately the output characteristics of TFTs with different channel dimensions, making the proposed model suitable for the design of circuits with nc-Si TFTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.