Abstract

AbstractGrazing cover crops may increase land‐use efficiency while promoting sustainability. We investigated how grazing intensity affects cover crop litter quantity, quality, decomposition, and cotton (Gossypium hirsutum L.) N uptake. Cover crops were a mixture of rye (Secale cereale L.) and oat (Avena sativa L.) managed as follows: no grazing +34 kg N ha−1 (NG34), no grazing +90 kg N ha−1 (NG90), heavy grazing (HG), moderate grazing (MG), and light grazing (LG). Grazed treatments received 90 kg N ha−1. After cover crop termination, above‐ and belowground litter was collected and incubated in situ for 0, 4, 8, 16, 32, 64, and 128 days, with cotton plants sampled on the same days to estimate N recovery and synchrony between N release from litter and uptake by cotton. By Day 128, only 13% of initial NG34 aboveground biomass had disappeared, whereas 42% of HG disappeared. Nitrogen retained in aboveground litter of HG was less than NG90 (27 vs. 60 kg N ha−1), and aboveground final N stock (at Day 128) of HG was less than NG90 and LG (16, 47, and 41 kg N ha−1, respectively). Belowground litter contributed 98 kg N ha−1 versus 46 for aboveground. Belowground N disappearance from litter bags was greater from NG90 than NG34 (39 vs. 21 kg N ha−1). Cotton N uptake by Day 128 was similar across treatments (191 kg N ha−1). Grazing cover crops impact aboveground litter quantity, quality, and decomposition rates, and belowground litter plays an important role on the N cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call