Abstract

We investigated soluble carbohydrate transport in trees that differed in their phloem loading strategies in order to better understand the transport of photosynthetic products into the roots and the rhizosphere as this knowledge is needed to better understand the respiratory processes in the rhizosphere. We compared beech, which is suggested to use mainly passive loading of transport sugars along a concentration gradient into the phloem, with ash that uses active loading and polymer trapping of raffinose family oligosaccharides (RFOs). We pulse-labeled 20 four-year old European beech and 20 four-year old ash trees with 13CO2 and tracked the fate of the label within different plant compartments. We extracted soluble carbohydrates from leaves, bark of stems and branches, and fine roots, measured their amount and isotopic content and calculated their turnover times. In beech one part of the sucrose was rapidly transported into sink tissues without major exchange with storage pools whereas another part of sucrose was strongly exchanged with unlabeled possibly stored sucrose. In contrast the storage and allocation patterns in ash depended on the identity of the transported sugars. RFO were the most important transport sugars that had highest turnover in all shoot compartments. However, the turnover of RFOs in the roots was uncoupled from the shoot. The only significant relation between sugars in the stem base and in the roots of ash was found for the amount (r2 = 0.50; p = 0.001) and isotopic content (r2 = 0.47; p = 0.01) of sucrose. The negative relation of the amounts suggested an active transport of sucrose into the roots of ash. Sucrose concentration in the root also best explained the concentration of RFOs in the roots suggesting that RFO in the roots of ash may be resynthesized from sucrose. Our results interestingly suggest that in both tree species only sucrose directly entered the fine root system and that in ash RFOs are transported indirectly into the fine roots only. The direct transport of sucrose might be passive in beech but active in ash (sustained active up- and unloading to co-cells), which would correspond to the phloem loading strategies. Our results give first hints that the transport of carbohydrates between shoot and root is not necessarily continuous and involves passive (beech) and active (ash) transport processes, which may be controlled by the phloem unloading.

Highlights

  • The transport of photosynthetically fixed CO2 as the primary source of organic carbon (C) plays a crucial role in the C cycle of terrestrial ecosystems [1]

  • raffinose family oligosaccharides (RFOs) and sucrose, while in monosaccharide we found approx. 12%

  • The consecutive decay of 13C enrichment in RFOs in the ash shoot was similar to sucrose in beech with highest enrichments at day one and continuous depletion afterwards (Fig 1)

Read more

Summary

Introduction

The transport of photosynthetically fixed CO2 as the primary source of organic carbon (C) plays a crucial role in the C cycle of terrestrial ecosystems [1]. The current dominant transport theory is a modified dynamic version of the Muench mass flow model [4]. It assumes a continuous pressure-driven mass flow system in the phloem allowing carbohydrates to be transported over long distances in the plant from source directly to sink tissues. Especially sucrose, from the source tissue into the sieve tubes of the collection-phloem, and by sugar unloading in the release-phloem of sinks, plants maintain a concentration and pressure gradient between source and sink that drives the mass flow [5,6,7]. The current transport theory suggests an osmoregulatory pressure flow (ORPF), which is determined by the interplay of phloem turgor pressure and osmotic potential of the phloem sap and its surrounding tissues [8,9,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call