Abstract

Current rates of ocean warming are predicted to exacerbate ongoing declines in seagrass populations. Above-ground responses of seagrass to increasing temperatures have been studied from a direct physiological perspective while indirect effects, including changes to microbially-mediated below-ground processes, remain poorly understood. To test potential effects of increased temperature on seagrass growth and associated microbial communities, we sampled seagrass beds experiencing ambient and elevated water temperatures at Lake Macquarie, Australia. Sites with warmer water were associated with a plume from a power station discharge channel with temperatures analogous to conditions predicted by 2100 under current rates of ocean warming (+3°C). The microbial community composition in both sediments and leaf tissues varied significantly between warm and ambient water temperatures with higher relative abundances of putative sulphate-reducing bacteria such as Desulfocapsaceae, Desulfobulbaceae and Desulfosarcinaceae in sedimentary communities in warm water. Above-ground biomass and seagrass growth rates were greater at warm sites while below-ground biomass and detrital decomposition rates showed no difference suggesting potential buffering of temperature effects below-ground. These findings suggest a 3°C rise in temperate regions is unlikely to induce mortality in seagrass however, it may shift microbial communities towards more homogenous structure and composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.