Abstract
We investigate, numerically, the possibility of associating to each approximation to the exchange-and-correlation functional in density-functional theory (DFT), an optimal electron–electron interaction potential for which it performs best. The fundamental theorems of density-functional theory (DFT) make no assumption about the precise form of the electron–electron interaction: to each possible electron–electron interaction corresponds an exchange-and-correlation functional. This fact suggests the opposite question: given some functional of the density, is there any electron–electron interaction for which it is the exact exchange-and-correlation functional? And, if not, what is the interaction for which the functional produces the best results? Within the context of lattice DFT, we study these questions by working on the one-dimensional Hubbard chain. The idea of associating an optimal interaction potential to each approximation to the exchange and correlation functionals suggests, finally, a procedure to optimise parameterised families of functionals: find that one whose associated interaction most closely resembles the real one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.