Abstract
The aim of this paper is to relate the two meteorological parameters known as relative (bright) sunshine duration and cloudiness using the data from two stations of the city of Hamburg, Germany. We test the classic linear relationship, as well as newer polynomial extensions suggested in the literature. The results of regression are interpreted against a theoretical background recently put forward by Badescu. The suggested relations can be borne out, but we also point out difficulties due to data quality and insufficiency.
Highlights
Knowledge of the relationship between sunshine duration and cloudiness is very important for the practical forecast of insolation [1]
The aim of this paper is to relate the two meteorological parameters known as relative sunshine duration and cloudiness using the data from two stations of the city of Hamburg, Germany
Due to the lack of cloudiness measurements before 2004, the corresponding time series at the weather mast is shorter than the time period we are envisaging in this study
Summary
Knowledge of the relationship between sunshine duration and cloudiness is very important for the practical forecast of insolation [1]. In solar energy technology there are key meteorological parameters on both short and longer time scales. Datasets with sunshine duration are widespread and available for many parts of the world and long time intervals. For use in solar energy technologies, cloudiness is fundamental [1] because the insolation reaching the ground depends on the amount and type of the clouds blocking the direct solar radiation [2]. Due to the fact that cloudiness is much more difficult to measure accurately, it has since long been found necessary to look for a relationship between the widely available sunshine duration measurements and the formerly rather elusive estimation of cloudiness
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.