Abstract

In a context of cost reduction, in situ filament winding of thermoplastic matrix composites becomes an appealing process. As residual stresses could considerably affect the produced part, models were proposed to predict process-induced residual stresses. After developing a validated thermal model of the process, mainly three different aspects are here addressed: the continuous bonding occurring during the process, the effect of the processed layer on the structure, and the effect of the curvature of the mandrel. While stresses coming from the continuous bonding appeared to be negligible, consequent levels of stresses can be achieved due to an iterative compression of the structure by the tow (supposed to be under tension). The mandrel properties and the tow tension profile followed during winding are essential parameters that might induce several different stress states. A comparison between measured and computed end-to-end openings of split rings illustrates the accuracy of the proposed models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.