Abstract

Approaching sensation scientifically is relatively straightforward. There are physical attributes for stimulating the central nervous system, and there are specific receptors for each sense for translating the physical signals into codes that brain will recognize. When studying time though, it is far from obvious that there are any specific receptors or specific stimuli. Consequently, it becomes important to determine whether internal time obeys some laws or principles usually reported when other senses are studied. In addition to reviewing some classical methods for studying time perception, the present chapter focusses on one of these laws, Weber law, also referred to as the scalar property in the field of time perception. Therefore, the question addressed here is the following: does variability increase linearly as a function of the magnitude of the duration under investigation? The main empirical facts relative to this question are reviewed, along with a report of the theoretical impact of these facts on the hypotheses about the nature of the internal mechanisms responsible for estimating time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.