Abstract

AimThe study was aimed to investigate the impact of superassociation of hydrophobic ion pairs (HIPs) on membrane permeability. MethodsToluidine blue O (TBO) as a cationic model compound was complexed with anionic counter ions having different physiochemical properties namely dodecanoate (DD), oleate (OL), deoxycholate (DC), docusate (DO) and dodecyl sulfate (DS). TBO HIPs were characterized regarding log P, zeta potential and stability over 8 h at pH 7.4. Association and dissociation constants (Ka and Kd) were calculated by applying quasi-equilibrium equation to the double reciprocal plots of log P versus counter ion concentrations. Permeation studies of free TBO, superassociated TBO HIPs and HIPs applied as entirely dissociated form were carried out across human colorectal adenocarcinoma-derived cell line (Caco-2) and freshly excised rat intestinal mucosa. ResultsTBO HIPs of increasing lipophilicity ranging from log P 0.59 to 2.35 were obtained as a result of ion pairing with anionic counter ions. Zeta potential of TBO shifted from positive to negative due to ion pairing. HIPs with DO and DS showed highest stability at pH 7.4. Association constant (Ka) values for TBO HIPs were found in the following rank order; DS > DO > OL > DC > DD. Due to superassociation of HIPs, permeation of TBO was efficiently improved up to 3.1-fold across Caco-2 cells and up to 2.5-fold across rat intestinal mucosa. ConclusionSuperassociated HIPs showed generally a significantly higher membrane permeability than free TBO and entirely dissociated HIPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call