Abstract

SummaryLarge‐scale problems in engineering and science often require the solution of sparse linear algebra problems and the Krylov subspace iteration methods (KM) have led to a major change in how users deal with them. But, for these solvers to use extreme‐scale hardware efficiently a lot of work was spent to redesign both the KM algorithms and their implementations to address challenges like extreme concurrency, complex memory hierarchies, costly data movement, and heterogeneous node architectures. All the redesign approaches bases the KM algorithm on block‐based strategies which lead to the Block‐KM (BKM) algorithm which has high granularity (i.e., the ratio of computation time to communication time). The work proposes novel parallel revisitation of the modules used in BKM which are based on the overlapping of communication and computation. Such revisitation is evaluated by a model of their granularity and verified on the basis of a case study related to a classical problem from numerical linear algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.