Abstract

In this work we study in a general view slow rotating planets as Venus or Titan which present superrotating winds in their atmospheres. We are interested in understanding what mechanisms are candidates to be sources of net angular momentum to generate this kind of dynamics. In particular, in the case of Venus, in its atmosphere around an altitude of 100 km relative to the surface, there exists winds that perform a full rotation around the planet in four terrestrial days, whereas the venusian day is equivalent to 243 terrestrial ones. This phenomenon called superrotation is known since many decades. However, its origin and behaviour is not completely understood. In this article we analise and ponderate the importance of different effects to generate this dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.