Abstract

This article is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for Laplace's equation in domains with Lipschitz boundary. It completes the results obtained by Bourgeois [Conditional stability for ill-posed elliptic Cauchy problems: The case of C1,1 domains (part I), Rapport INRIA 6585, 2008] for domains of class C 1,1. This estimate is established by using an interior Carleman estimate and a technique based on a sequence of balls which approach the boundary. This technique is inspired by Alessandrini et al. [Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Annali della Scuola Normale Superiore di Pisa 29 (2000), pp. 755–806]. We obtain a logarithmic stability estimate, the exponent of which is specified as a function of the boundary's singularity. Such stability estimate induces a convergence rate for the method of quasi-reversibility introduced by Lattès and Lions [Méthode de Quasi-Réversibilité et Applications, Dunod, Paris, 1967] to solve the Cauchy problems. The optimality of this convergence rate is tested numerically, precisely a discretized method of quasi-reversibility is performed by using a nonconforming finite element. The obtained results show very good agreement between theoretical and numerical convergence rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.