Abstract

As recently shown, a fractional model can be viewed as a doubly infinite model: its “real state” is of infinite dimension as it is distributed, but it is distributed on an infinite domain. It is shown in the paper, that this last feature induces a physically inconsistent property: the model real state has the ability to store an infinite amount of energy. This property demonstration is based on an electrical interpretation of fractional models. As a consequence, even if fractional models permit to capture accurately the input-output dynamical behavior of many physical systems, such a property highlights a physical inconsistence of fractional models: they do not reflect the reality of macroscopic physical systems in terms of energy storage ability. This property is shown for implicit fractional models and extends previous result of the authors for explicit fractional models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.