Abstract
The existence of stationary points for the dynamical system of ABC-flow is considered.The ABC-flow, a three-parameter velocity field that provides a simple stationary solution of Euler's equations in three dimensions for incompressible, inviscid fluid flows, is the prototype for the study of turbulence (it provides a simple example of dynamical chaos).But, nevertheless, between the chaotic trajectories of the appropriate solutions of such a system we can reveal the stationary points, the deterministic basis among the chaotic behaviour of ABC-flow dynamical system. It has been proved the existence of 1 point for two partial cases of parameters {A, B, C}: (1) A = B = 1; (2) C = 1 (A² + B² = 1). Moreover, dynamical system of ABC-flow allows 3 points of such a type, depending on the meanings of parameters {A, B, C}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.