Abstract
AbstractDynamics of hydrodynamic perturbations in a plasma depend strongly on an angle between the wave vector and equilibrium straight magnetic field. The case of perpendicular propagation is especial. There are only two (fast) magnetosonic modes since two (slow) ones degenerate into the stationary one with zero speed of propagation. This demands individual definition of wave modes by the links of hydrodynamic relations. These links are not limiting case of the relations in the case of non‐zero angle. The nonlinear excitation of the entropy mode in the field of intense magnetosonic perturbations is also unusual. Bulk and shear viscosity and thermal conduction are considered as the damping mechanisms in a weakly nonlinear flow. The leading‐order dynamic equation is derived which governs perturbation of density in the entropy mode. The links of magnetosonic perturbations and magnetosonic heating may be indicators of plasma‐, geometry of a flow, damping coefficients and type of wave motion. The “almost resonant” character of magnetosonic heating excited by the slow magnetosonic wave in the course of nearly perpendicular wave propagation, is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.