Abstract

Let $M$ denote a compact, connected Riemannian manifold of dimension $n\in{\mathbb N}$. We assume that $ M$ has a smooth and connected boundary. Denote by $g$ and ${\rm d}v_g$ respectively, the Riemannian metric on $M$ and the associated volume element. Let $\Delta$ be the Laplace operator on $M$ equipped with the weighted volume form ${\rm d}m:= {\rm e}^{-h}\,{\rm d}v_g$. We are interested in the operator $L_h\cdot:={\rm e}^{-h(\alpha-1)} (\Delta\cdot +\alpha g(\nabla h,\nabla\cdot))$, where $\alpha > 1$ and $h\in C^2(M)$ are given. The main result in this paper states about the existence of upper bounds for the eigenvalues of the weighted Laplacian $L_h$ with the Neumann boundary condition if the boundary is non-empty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.