Abstract

Most daphnid species adopt parthenogenesis and sexual reproduction differentially in response to varied environmental cues, resulting in the production of diploid progenies in both cases. Previous studies have reportedly suggested that daphnids produce their parthenogenetic eggs via apomixis; the nuclear division of mature oocytes should be an equational division similar to somatic mitosis. However, it seems premature to conclude that this has been unequivocally established in any daphnids. Therefore, the objective of our research was to precisely reveal the process and mechanism of parthenogenetic oogenesis and maintenance of diploidy in Daphnia pulex through histology, karyology, and immunohistochemistry. We found that, when a parthenogenetic egg entered the first meiosis, division was arrested in the early first anaphase. Then, two half-bivalents, which were dismembered from each bivalent, moved back to the equatorial plate and assembled to form a diploid equatorial plate. Finally, the sister chromatids were separated and moved to opposite poles in the same manner as the second meiotic division followed by the extrusion of one extremely small daughter cell (resembling a polar body). These results suggest that parthenogenetic D. pulex do not adopt typical apomixis. We hypothesize that D. pulex switches reproductive mode depending on whether the egg is fertilized or not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.