Abstract

The long and increasing test application time for modular core-based system-on-chips is a major problem, and many approaches have been developed to deal with the problem. Different from previous approaches, where it is assumed that all tests will be performed until completion, we consider the cases where the test process is terminated as soon as a defect is detected. Such abort-on-fail testing is common practice in production test of chips. We define a model to compute the expected test time for a given test schedule in an abort-on-fail environment. We have implemented three scheduling techniques and the experimental results show a significant test time reduction (up to 90%) when making use of an efficient test scheduling technique that takes defect probabilities into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.