Abstract
ABSTRACTCellular migration is a ubiquitous feature that brings brain cells into appropriate spatial relationships over time; and it helps in the formation of a functional brain. We studied the migration patterns of induced pluripotent stem cell-derived neural precursor cells (NPCs) from individuals with familial bipolar disorder (BD) in comparison with healthy controls. The BD patients also had morphological brain abnormalities evident on magnetic resonance imaging. Time-lapse analysis of migrating cells was performed, through which we were able to identify several parameters that were abnormal in cellular migration, including the speed and directionality of NPCs. We also performed transcriptomic analysis to probe the mechanisms behind the aberrant cellular phenotype identified. Our analysis showed the downregulation of a network of genes, centering on EGF/ERBB proteins. The present findings indicate that collective, systemic dysregulation may produce the aberrant cellular phenotype, which could contribute to the functional and structural changes in the brain reported for bipolar disorder. This article has an associated First Person interview with the first author of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.