Abstract
Inertial measurement units (IMU) are used as an affordable and effective remote measurement method for health monitoring in body sensor networks (BSNs) based on tracking people’s daily motions and activities. These inertial sensors are mostly micro-electro-mechanical systems with a combination of multi-axis combinations of precision gyroscopes, accelerometers, and magnetometers to sense multiple degrees of freedom (DoF).Unfortunately in the process of motion monitoring actual sensor outputs may contain some abnormalities, which might result in the misinterpretations of activities. In this paper, we use Principal component analysis (PCA) combined with Hotelling’s T2 and SPE statistic to detect abnormal data in the process of motion monitoring with IMU to ensure the reliability and accuracy in application. The simulated results prove this method is effective and feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.