Abstract

The molecular basis of X-linked lymphoproliferative (XLP) disease has been attributed to mutations in the signaling lymphocytic activation molecule-associated protein (SAP), an src homology 2 domain-containing intracellular signaling molecule known to interact with the lymphocyte-activating surface receptors signaling lymphocytic activation molecule and 2B4. To investigate the effect of SAP defects on TCR signal transduction, herpesvirus saimiri-immortalized CD4 Th cells from XLP patients and normal healthy individuals were examined for their response to TCR stimulation. CD4 T cells of XLP patients displayed elevated levels of tyrosine phosphorylation compared with CD4 T cells from healthy individuals. In addition, downstream serine/threonine kinases are constitutively active in CD4 T cells of XLP patients. In contrast, TCR-mediated activation of Akt, c-Jun-NH(2)-terminal kinases, and extracellular signal-regulated kinases in XLP CD4 T cells was transient and rapidly diminished when compared with that in control CD4 T cells. Consequently, XLP CD4 T cells exhibited severe defects in up-regulation of IL-2 and IFN-gamma cytokine production upon TCR stimulation and in MLRs. Finally, SAP specifically interacted with a 75-kDa tyrosine-phosphorylated protein upon TCR stimulation. These results demonstrate that CD4 T cells from XLP patients exhibit aberrant TCR signal transduction and that the defect in SAP function is likely responsible for this phenotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.