Abstract

The morphology evolution of liquid crystal droplets immersed in an isotropic fluid in flow field is found to be different from flexible polymer droplets. In this paper, we investigated the retraction of a liquid crystal droplet after transient flow. It is found that the liquid crystal droplet will rotate during the shape recovery, which has never been observed for an isotropic droplet. The factors that influence the rotational angle of a single liquid crystal droplet during retraction progress were studied, including the temperature, the dimension of the droplets, the time of shear flow, the shear rate, the flow type, and the properties of liquid crystal molecules. The rotation of liquid crystal droplet during shape recovery is ascribed to both the bulk elasticity of liquid crystal droplets and the anisotropic properties of the interface between liquid crystal and isotropic fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.