Abstract
High frequency electromagnetic fields emitted from digital cellular telephones (cell phones) occasionally cause abnormally high and erroneous indicated dose readings on electronic pocket dosimeters (EPDs). Electric field strength distribution around a cell phone transmitting 1.5 GHz band with a maximum power of 0.8 W was analyzed by using an isotropic probe with tri-axial dipole antennas. Five types of EPDs were exposed to the fields for 50 s under configurations relative to the cell phone. The electric field distribution expanded around the phone's antenna and had a maximum electric field strength of 36.5 +/- 0.3 V m(-1). The cell phone gave rise to erroneous indicated dose readings on four out of five EPDs. The maximum value of erroneous indicated dosage for 50 s reached 1,283 microSv, which was about 2.6% of the annual effective dose limit of 50 mSv. The electromagnetic susceptibility of the EPDs was higher in the sections where the semiconductor detectors or electric circuit boards were located. The distance required to prevent electromagnetic interference differed for each EPD and ranged from 2.0 to 21.0 cm from the cell phone. The electric and magnetic field immunity levels of the EPDs varied from 9.2 V m(-1) to greater than 37.6 V m(-1), and from 0.03 A m(-1) to greater than 0.51 A m(-1). The EPDs displayed erroneous dose readings during exposure but recovered their normal performance after the cell phone ceased transmitting. The electromagnetic immunity levels of the EPDs were either equal to or greater than the IEC-standard. The immunity levels should be enhanced greater than the IEC-standard from the standpoint of radiation protection. The simplest and most reliable measure to prevent potential malfunction is to prohibit the radiation workers from carrying cell phones to their workplace.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.