Abstract

alpha2-Adrenergic receptors (ARs) play a key role in regulating neurotransmitter release in the central and peripheral sympathetic nervous systems. To date, three subtypes of alpha2-ARs have been cloned (alpha2A, alpha2B, and alpha2C). Here we describe the physiological consequences of disrupting the gene for the alpha2A-AR. Mice lacking functional alpha2A subtypes were compared with wild-type (WT) mice, with animals lacking the alpha2B or alpha2C subtypes, and with mice carrying a point mutation in the alpha2A-AR gene (alpha2AD79N). Deletion of the alpha2A subtype led to an increase in sympathetic activity with resting tachycardia (knockout, 581 +/- 21 min-1; WT, 395 +/- 21 min-1), depletion of cardiac tissue norepinephrine concentration (knockout, 676 +/- 31 pg/mg protein; WT, 1178 +/- 98 pg/mg protein), and down-regulation of cardiac beta-ARs (Bmax: knockout, 23 +/- 1 fmol/mg protein; WT, 31 +/- 2 fmol/mg protein). The hypotensive effect of alpha2 agonists was completely absent in alpha2A-deficient mice. Presynaptic alpha2-AR function was tested in two isolated vas deferens preparations. The nonsubtype-selective alpha2 agonist dexmedetomidine completely blocked the contractile response to electrical stimulation in vas deferens from alpha2B-AR knockout, alpha2C-AR knockout, alpha2AD79N mutant, and WT mice. The maximal inhibition of vas deferens contraction by the alpha2 agonist in alpha2A-AR knockout mice was only 42 +/- 9%. [3H]Norepinephrine release studies performed in vas deferens confirmed these findings. The results indicate that the alpha2A-AR is a major presynaptic receptor subtype regulating norepinephrine release from sympathetic nerves; however, the residual alpha2-mediated effect in the alpha2A-AR knockout mice suggests that a second alpha2 subtype (alpha2B or alpha2C) also functions as a presynaptic autoreceptor to inhibit transmitter release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.