Abstract

To determine the roles of glial fibrillary acidic protein (GFAP) and vimentin in Müller cell reactivity. Retinal detachments were created in mice deficient for GFAP and vimentin (GFAP(-/-)vim(-/-)) and age-matched wild-type (wt) mice. The reactivity of the retina was studied by immunofluorescence and electron microscopy. Müller cell morphology was different and glutamine synthetase immunoreactivity was reduced in the undisturbed GFAP(-/-)vim(-/-) retinas. After retinal detachment, Müller cells formed subretinal glial scars in the wt mice. In contrast, such scars were not observed in GFAP(-/-)vim(-/-) mice. Müller cells, which normally elongate and thicken in response to detachment, appeared compressed, thin, and "spikey" in the GFAP(-/-)vim(-/-) mice. The end foot region of Müller cells in the GFAP(-/-)vim(-/-) mice often sheared away from the rest of the retina during detachment, corroborating earlier results showing decreased resistance of this region in GFAP(-/-)vim(-/-) retinas to mechanical stress. In regions with end foot shearing, ganglion cells showed intense neurite sprouting, as revealed by anti-neurofilament labeling, a response rarely observed in wt mice. Müller cells are subtly different in the GFAP(-/-)vim(-/-) mouse retina before detachment. The end foot region of these cells may be structurally reinforced by the presence of the intermediate filament cytoskeleton, and our data suggest a critical role for these proteins in Müller cell reaction to retinal detachment and participation in subretinal gliosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call