Abstract

Myelodysplastic syndromes (MDS) are clonal stem cell disorders characterized by ineffective hematopoiesis that lead to leukemia. Disorders of the immune system serve important functions in the pathophysiology and progression of this disease. Different levels or mechanisms of natural killer (NK) cells in patients with MDS have been measured in previous studies, making it challenging to understand the pathogenesis of NK cytotoxicity. The present study investigated the frequency of NK cell-mediated antibody-dependent cellular cytotoxicity and explored the function of NK cells by their activating receptors, inhibition signals, degranulation and cytotoxicity factors. In the present study, levels of cluster of differentiation (CD)3−CD56+ NK cells, CD16+-expressing NK cells and subset CD56dim NK cells were decreased in the peripheral blood of patients with MDS. Altered expression of NK protein 44, NK group 2 member D, killer cell immunoglobulin-like receptor 2DL1 (KIR2DL1) and KIR2DL3 on NK cell effector signaling pathways may trigger tumor cell lysis in patients with MDS. The weak cellular adhesion and decreased cytotoxicity of NK cells may lead to ineffective antitumor activity in MDS. These observations suggested that NK cells may serve as immunological determinants in MDS and may permit the development of NK cell-based immunotherapy for the treatment of patients with MDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call