Abstract
AbstractSemiconductor p‐n heterojunctions are important building blocks for modern electronic and photonic devices. Further combining semiconductor p‐n heterojunctions with light and electrolyte environment, interesting photoelectrochemical (PEC) phenomena can occur, which enriches the design principles of multifunctional devices. In fact, recent years have witnessed the emergence of PEC‐type photonic devices. For PEC‐type photonic devices, a key to realize multifunctionality is to control the photocurrent polarity of the photoelectrode. In this study, an abnormal photocurrent is reported from p‐InGaN/n‐GaN nanowire heterojunctions under a blue light illumination: although n‐GaN is transparent to the blue light (and thus optical absorption mainly occurs in p‐InGaN) and p‐InGaN in principle can only give negative PEC photocurrent, the detailed experiments show that positive PEC photocurrent can be generated from the p‐InGaN segment due to the existence of the built‐in electric field at the p‐n junction. This study shows a new route to control the photocurrent polarity in a semiconductor p‐n heterojunction photoelectrode. This unveiled role of the built‐in electric field is expected to impact the design of emerging PEC‐type photonic devices, as well as other novel photonic and electronic devices based on semiconductor nanowire p‐n heterojunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.