Abstract

In a previous paper the authors showed that when the surface velocity of a body having lower elastic modulus is faster than that of a body having higher elastic modulus, and when the radius of curvature of the former is larger than that of the latter, a deep conical depression (dimple) is produced in the contact surface. This dimple occurs in place of the flat plateau predicted by the point contact elastohydrodynamic lubrication (EHL) theory. In this paper, the effects of surface kinematic conditions on the formation of such abnormal phenomena, which cannot be predicted by the present EHL theory, are investigated under rolling/sliding conditions using the optical interferometry technique. Transient behavior of the dimple caused by a groove passing through the EHL conjunction is also discussed based on direct observations. It has been found that the dimple occurs when the lubricating oil in the contact area is composed of solidified and unsolidified parts, and the dimple itself corresponds to the solidified part. On the basis of this finding, it has been asserted that the establishment of a new EHL theory is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call