Abstract

Defects in neutrophil adhesion and migration may contribute to the susceptibility to infection seen in sickle cell anaemia (SCA). These dynamic defects may be influenced by abnormalities in blood rheology found in this disorder. A whole blood model was used to study neutrophil adhesion in SCA patients: neutrophil adhesion to protein coated glass was quantitated by measuring the rate of disappearance of neutrophils from heparinized whole blood circulating through a perfusion chamber. Twenty-three adult patients (Hb SS) were studied in asymptomatic steady state, of whom nine were also studied during pain crisis, both before and 4-7 d after conventional therapy. Red cell and granulocyte filterability and whole blood and plasma viscosity were also measured. The half-time for disappearance from the perfusion system (t1/2) of neutrophils from patients in the steady-state was 93.5 +/- 8.4 min, compared to 49.1 +/- 2.8 min in normal age-matched controls (P = 0.001). In crisis t1/2 was further prolonged to 170.0 +/- 16.1 min (P = 0.01 v. steady state). After therapy, t1/2 decreased to 57.0 +/- 4.5 min (P = 0.001 v. pre-therapy state and P = 0.009 v. steady state) and was comparable to Hb AA controls. These findings reveal a neutrophil adhesion defect in SCA which worsens in crisis but is corrected following supportive therapy. Red cell filterability (expressed as average resistance to flow and pore-clogging particles) and white cell filterability (expressed as pore-clogging particles) were also abnormal in SCA and were found to correlate with neutrophil adhesion. Plasma viscosity also correlated with adhesion t1/2. The defect appears to be related to abnormal blood flow properties in SCA but the rheological factors cannot fully explain either the steady-state defect or the marked changes in neutrophil adhesion during crisis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call