Abstract

Iron rhodium (FeRh) undergoes a first-orderanti-ferromagnetic to ferromagnetic phase transition above its Curie temperature. By measuring the anomalous Nernst effect (ANE) in (110)-oriented FeRh films on Al2O3 substrates, the ANE thermopower over a temperature range of 100-350 K is observed, with similar magnetic transport behaviors observed for in-plane magnetization (IM) and out-of-plane magnetization (PM) configurations. The temperature-dependent magnetization-magnetic field strength (M-H) curves revealed that the ANE voltage is proportional to the magnetization of the material, but additional features magnetic textures not shown in the M-H curves remained intractable. In particular, a sign reversal occurred for the ANE thermopower signal near zero field in the mixed-magnetic-phase films at low temperatures, which is attributed to the diamagnetic properties of the Al2O3 substrate. Finite element method simulations associated with the Heisenberg spin model and Landau-Lifshitz-Gilbert equation strongly supported the abnormal heat transport behavior from the Al2O3 substrate during the experimentally observed magnetic phase transition for the IM and PM configurations. The results demonstrate that FeRh films on an Al2O3 substrate exhibit unusual behavior compared to other ferromagnetic materials, indicating their potential for use in novel applications associated with practical spintronics device design, neuromorphic computing, and magnetic memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.