Abstract
BackgroundThis study aims to investigate serological characteristics of kynurenine pathway (KP) metabolites in healthy controls (HC) and gout patients and explore possible differential metabolites. MethodsA total of 191 individual fresh residual sera was collected from 129 HC and 62 gout patients. A liquid chromatography-tandem mass spectrometry method was fully validated to measure 6 metabolites, including tryptophan (TRP), kynurenine (KYN), 5-hydroxytryptamine (5HT), kynurenic acid (KA), xanthurenic acid (XA), and neopterin (NEO). Supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) and differential metabolite screening with fold change (FC) were performed to identify intrinsic variations and differential levels of KP metabolites between the HC and gout groups. Logistic regression was used to assess the contributions of KP metabolites to gout. ResultsThere were significant decreases of TRP, 5HT, XA, and NEO and increases of KYN, KA, KA/KYN, and KYN/TRP in gout patients compared to the HC group (all p < 0.05). KP metabolites of the gout group showed good discrimination from those of the HC group (Q2: 0.892). Two distinct different metabolites were identified in gout, i.e., XA (FC: 0.56, p < 0.01) and NEO (FC: 0.34, p < 0.01). Of the KP metabolites, KYN was strongly associated with gout (OR: 7.91, p < 0.01). ConclusionsAbnormal levels of serum KP metabolites were observed in gout. XA and NEO are promising biomarkers that were relevant to the status of gout. The level of KYN could be an attractive checkpoint for the management of gout. Continuous monitoring of KP metabolism in gout provides new opportunities to predict therapeutic efficacy and prognosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.