Abstract

The evolution in both stress and microstructure was investigated on sputtered Cu0.57Ni0.42Mn0.01thin films of 400 nm thickness during the first temperature cycle up to 550 °C. Samples from stress–temperature measurements up to various maximum temperatures were analyzed by x-ray diffraction, scanning and transmission electron microscopy, and Auger electron spectroscopy. The columnar grains with lateral diameters of about 20 nm in the as-deposited state coarsen to about 400 nm above 300 °C. Probably due to the impurity (Mn) drag effect, the coarsening occurs by abnormal grain growth rather than by normal grain growth, starting near the film–substrate interface. The stress development results from a combination of densification due to grain growth and plastic stress relaxation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call