Abstract

At excitatory synapses, glutamate released from neurons is taken up by glial cells and converted to glutamine, which is cycled back to neurons. Alterations in this system are believed to play a role in the pathophysiology of bipolar disorder, but they have not been characterized in vivo. We examined the glutamine/glutamate ratio and levels of other metabolites in acute mania and schizophrenia in this exploratory study. Data were obtained from 2 x 2 x 2 cm voxels in the anterior cingulate cortex (ACC) and parieto-occipital cortex (POC) using two-dimensional J-resolved proton magnetic resonance spectroscopy at 4 Tesla and analyzed using LCModel. Fifteen bipolar disorder patients with acute mania and 17 schizophrenia patients with acute psychosis were recruited from an inpatient unit; 21 matched healthy control subjects were also studied. Glutamine/glutamate ratio and N-acetylaspartate, creatine, choline, and myo-inositol levels were evaluated in a repeated measures design. Medication effects and relationship to demographic and clinical variables were analyzed. Glutamine/glutamate ratio was significantly higher in ACC and POC in bipolar disorder, but not schizophrenia, compared with healthy control subjects. N-acetylaspartate was significantly lower in the ACC in schizophrenia. Patients on and off lithium, anticonvulsants, or benzodiazepines had similar glutamine/glutamate ratios. The elevated glutamine/glutamate ratio is consistent with glutamatergic overactivity and/or defective neuronal-glial coupling in acute mania, although medication effects cannot be ruled out. Abnormalities in glutamatergic neurotransmission and glial cell function in bipolar disorder may represent targets for novel therapeutic interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.